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1. Introduction

The application of Kudryashov’s newly proposed
generalized power—law of refractive index has attracted
wide attention across the globe [1-20]. There are several
papers that have been reported with this proposed form of
self-phase modulation effect [8-15]. There are
applications that are visible in optical fibers, PCF, Bragg
gratings as well as other kinds of optoelectronic devices.
Today’s work is an application of Kudryashov’s
generalized law of SPM to yet another device, namely
optical couplers. The usual chromatic dispersion is also
replaced by a combination of third—order dispersion
(30D) and fourth—order dispersion (40D) effects. This is
collectively known as cubic—quartic (CQ) dispersive
effect. This is an occasional replacement is carried out
when CD is on the verge of depletion.

To study the model from an updated standpoint, the
material is considered to be of optical metamaterials.
Thus, the governing model is the study of solitons in

optical couplers that comprises of optical metamaterials and
maintains Kudryashov’s lately proposed law of refractive
index. The new auxiliary equation approach is the integration
scheme that is adopted in this work to recover soliton
solutions. The solitons are also classified and are exhibited in
the paper along with their existence criteria. The couplers that
are considered are of twin—core type as well as multiple—core
types. But multiple—core couplers are of two types that are
studied in this paper, namely when the coupling is only with
nearest neighbors or with all neighbors. The comprehensive
set of results are exhibited after introductory discussions for
each type of coupler.

2. Twin—core couplers

The governing system of the CQ twin-core couplers in
optical metamaterials having the generalized Kudryashov’s
law of arbitrary refractive index with perturbation terms is
written, for the first time, as:
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1 dy €1
+ +
lgl*™ ~ lql*™ * |ql*"

iqt + ialexx + bquxxx +

f
+|qﬁ+gl|q|” + Ry lq?" + kylqP™ + L1q1* | q

= (1912 D xx + Bil1P Qrx + V19% G5 + a7
+i[A (1P + 11 (Uq1P)xq + 61117, (D)
and

2 d, €;
+ +
BT R

i1y + 1037 + Dolonx +

+% + g2 |7|™ + hy|r |2 + Ky |73 + L|r |4 | r

= a2(|r|2r)xx + ﬂzlrlzrxx + )/ZT'ZT;X + X249
+i[(r1Pr)y + wa(I7P)r + 02071, (2)

In Egs. (1) and (2), the complex-valued soliton
profiles are q(x,t) and r(x,t), where x and t are the
independent variables that are respectively spatial and
temporal components. Next, a;, b;, ¢;, d;, e;, fj, g;j. hj,
k], l], aj, ﬁ], ]/], X], l}’ ‘UJ and 91, (] = 1,2) are I’eal
constants, while i = v/—1. The coefficients of third-order
dispersion and fourth—order dispersion are a; and bj,
respectively. The constants ¢;, d;, e;, fj, g;, h;, kj and [;
are from SPM effect, while n is the power nonlinearity
parameter in SPM. Next, the coefficients of metamaterials
are a;, B; and y;, while the coefficients of the coupling are
xj- Finally, 4; are the self-steepening terms, while ; and
6; are the coefficients of nonlinear dispersion.

To retrieve solutions of Egs. (1) and (2), the
following hypothesis will be assumed:

q(x’ t) — CD1 (f)ei(—xx+wt+eo)’

r(x, t) — ¢2(€)ei(—xx+mt+so)’ (3)
and

§=x—wt, (4)

where k, w, &, and v are nonzero real constants. Here, k
is the soliton frequency, w is the wave number, &, is the
phase constant and v is the soliton velocity. Next, the real
functions @;(j = 1,2) represent the amplitudes of wave
transformation.

Inserting (3) along with (4) into Egs. (1) and (2), then
the real parts are given by:

b @ + 3k(ay, — 2b, )P — (By + 11

+3a,)P2D) — 60, D, D) — (w + ay K3
—b k)P — 1 P, + [KZ(.B1 +a;+v1)

+x(Ay + 0))]P3 + ¢, PIT + d, D13
+e, @17 + fid1 7" + g, P17
+h1q)%+2n + qu)%+3n + llq)%+4n = 0, (5)

and
bzq)g}) + 3K(a2 - szK)q)IZ’ - (ﬁz + yz

+3a,)P2D) — 6a, P, P2 — (w + azk3
—by )@y =y, @1 + [K2 (B, + a2 +72)
+K(Ay + 0,)]P3 + ¢, @374 + d, P 3"
+e, @372 + L0, + g, @3
+h,®IT2" 4 o, I3 4 |, pltin =, (6)
while, the imaginary parts are given by:
(aq — 4b )P + [2k(B —v1 + 3a1)
+(3BA; + 2uy + 6,)]PIP]
—(w +3a;x% — 4b, k3] =0, @)
and
(az — 4by k) @3 + [2k(B, — v, + 3a3)
+(3A; + 2u, + 6,)] 05D,
—(v + 3ayk? — 4b,k3) P, = 0. (8)

Using the linearly independent principle on Egs. (7) and
(8), one gets the soliton frequency as:

T
k= 4-bj’ (9)
the soliton velocity:
v = (4bjx — 3a;)K?, (10)

and the constraint conditions
ZK(,BJ- -y + 30(}-)
+(34 +2u; + 6;) = 0. (11)
Set
D, = AD,, (12)

such that A # 0 or 1. Consequently, Egs. (5) and (6) take the
forms:

bl(b§4) + 3K(a1 - Zblk)cbil - (ﬂl + ]/1
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+3a,) DD — 64, DD} — (@ + asx®
—bik* + Ax) @y + [K2(By + a1 + 1)
+ic(Ay + 01)]®F + ¢, @1 + dy "

+e, ®17" + fidi T + g o1
+h1¢)%+2n + k1¢)%+3n + llcb%+4n = 0, (13)

and
b, AP + 3KA(a, — 2b,K) DY — (B, + V2
+3a2)A3(D%(D1, - 6a2A3¢)1¢’£2 - [(a) + a2K3

—b, kA + 5] P1 + A [k (B, + ay +V2)

+K(Ay + 0,)] D3 + c, AP
+d2A1_3n¢%_3n + eZAI—an)%—Zn + szl_nCD%_n

+g2A1+nq)%+n + h2A1+2an%+2n

+k2A1+3nq)%+3n + 12A1+4nq)%+4—n =0. (14)

Egs. (13) and (14) have the same form under the
following conditions:

b, = Ab,,a; = a,A%, ¢, = c, AT,
a, — 2byx = A(a, — 2b,k),d; = d,AT3",
By + v+ 3a; = A%(B, + v, + 3ay),
er = QAT fi = LA, g1 = g.A"",
hy = hyATF20 o, = [, AL¥3 [ = [, Al¥n

w+ a;x3 — bkt + Ay,
= (0 + ayx3 — bykHA + x5,

Kz(ﬂ1 +a; +v) + k(4 +6,)
= A3k (B, + ay + v2) + (A, + 6,)]. (15)

From (15), we have:

a by 1
a; =7;b2 =Z'C2 =m.
dy €1 fi
dp = Al 2= A1—2n'f2 T
g1 hy ky
92 = A1+n'h2 = A1+2n'k2 = Al+3n’
L ay
l = g %2 T X2 = - wA+o,

_ Bity1i-1243 _ A4+601-6,43
:82 - A3 IAZ - 43 . (16)

Balancing d)f*) and ®"*! in Eq. (13), one gets the

balance number N = % Consequently, we take the following
transformation:

b, (&) = Un($), (17)

provided U (&) > 0. Substituting (17) into Eq. (13), results the
following equation:

nibh,URUM™ — 4n%(n — 1)b,UPU'U"" — 3n?
X (n—1)bU?U"? +6n2n—1)(n— b,
x UUU" — (n — 1)(2n — 1)(3n — 1)b, U™
+3n2%k(a, — 2byx)[nU3U" — (n — 1)U?U'?]
+n*c; + n*d U + n*e U2 + n*fLU3 — n*(w
+a,k3 — bkt + Ay )U* + n*g,U% + n*h, U®

+ntk, U7 + n* LU + n*[k?(B + ay + 741)

2+4n

+r(Ay +6)IU 7 —n*(By + vy + 3ay)

243n
xU n U +n(n—-1(F +711)

_3(n—3)a,|U U =0, (18)
For integrability, one must select
(n—1)(B+v1) —3(n—-3)a, =0,
K(B1+a;+y1) +4,+6, =0,
B1+7v1+3a, =0. (19)
Consequently, Eq. (18) changes to:
n3b,URUM™ — 4n?(n — 1)b,U?U'U"" — 3n?
X (n— 1)b,U?U"? + 6n(2n — 1)(n — 1)b,
x UU?U" —(n—1)(2n—1)(Bn — )b, U"*
+3n%k(a, — 2byx)[nU3U" — (n — 1)U?U'?]
+ntc; + n*d U + n*e U2 + n*fLU3 — n*(w
+a,x3 — byik* + Ay )U* + n*g,U®
+n*h, U® + n*k, U7 + n*l,U® = 0. (20)

Now, we will solve Eq. (20) by using the following
method:
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2.1. New auxiliary equation approach

According to this method [20], we assume that Eq.
(20) has the formal solutions:

U(§) = Xizo UuF (), (21)

where F (&) satisfies the first order auxiliary equation:
Flz(f) = Z?:o S]F](f)- (22)

Here Q,(L =0,1,....,N) and S;(J = 0,1,...,8) are
constants to be determined provided Q, # 0 and Sg # 0,
where N is a positive integer. We determine the balance
number N of (21) by using the homogeneous balance
method as follows:

If D(U)=N,D(U)=N+3,D({U")=N+6 and
hence

D[UsU@] = N(s + 1) + 3g. (23)

It is well known [19] that Eq. (22) has the following
types of solutions:

Type-1:1fSy =S, =8, =5,=5,=5,=0,5% —
45,85 > 0,5, > 0, then Eq. (22) admits the bright soliton
solutions:

1
3
2€S;
F&) = 22 , (24)
\/552—4-5258cosh(3\/5—25+501)_555

where € = +1 and &, is arbitrary constant.

Type-2:1fSy =85, =5;=5,=S,=5,=0,52 —
45,53 <0, S, > 0, then Eq. (22) admits the singular
soliton solutions:

F(§) = (25)

/—(552—4szss)sinh(3J5—zf+§02)—ess '

where € = +1 and &, is arbitrary constant.

Type-3:1fSy =85, =5;=5,=5,=5,=0,52 —
45,53 =0, S, > 0, then Eq. (23) admits the dark and
singular soliton solutions as:

1

F@§) = {—z—z[l + tanh G\/-gf + 503)]}5: (26)
and

F©) = {-2[1 2 coth (3536 + &a)|J', @)

respectively, where &, and &,, are arbitrary constants.
Balancing U3U™ and U® in Eq. (20) by using (23),
one gets:

4N +12=8N = N =3. (28)
It follows that Eq. (20) has the following solution form:
U®) = Qo + UF(§) + QF?(§) + QF3(E), (29)

where Q,, Q4, Q, and Q5 are constants, provided Q5 # 0.
Family-1: Substituting (29) and (22) into Eq. (20), one
gets algebraic equations. As aresult, ifwesetS, =S, = S; =
S, =8¢ =5, =0, in the obtained algebraic equations and
solving it by using the Maple, one gets the following results:

1
0 - 1 [ 9x2(6n® + 11n?2 + 6n + 1)(a, — 2b11c)2]Z
0 - )

T2 4(2n% — 2n + 1)%b, 1,

1
0 - [ 9x2(6n® +11n?2 + 6n+ 1)(a, — 2b11c)2]Z
3 — |~ ]

4’(2”2 - Zn + 1)2b1l1

0120220,5520,

n%k(a, — 2b k)

S = 12Gnz —2n+ Dby
_ n?k(a,;—2b1k)
Sg = 6(2n2-2n+1)b;’ (30)
and
9k2(37n% — 32n + 9)(a, — 2b;k)?
_+322n* = 2n+ 1)*(a,x® — byk* + Ax,)by
h 32(2n2 — 2n + 1)2b, ’
81k*(36n° — 49n* + 14n? — 1)(a, — 2b;k)*
[

4096(2n% — 2n + 1)*b21, '
d1 = 0, e = O,

_ 9x?(3n® — 7n® + 3n — 2)(a; — 2b;x)?
re 32(2n% — 2n + 1)2b,

1
9k2(6n® + 11n? + 6n + 1)(a; — 2b;k)?]*
4(2n2 - 2n + 1)2b,, ’

27nk%(n? — 4)(a; — 2b;k)?
4(2n? — 2n + 1)?b,

g1 =

1
[ 9k?(6n° + 11n% + 6n + 1)(a; — 2b1;c)2]‘Z

4(2n2 - Zn + 1)2b1l1

_9*(3n® + 190 + 20n + 4)(a; — 2b,k)?
re 4(2n% — 2n + 1)2b,

1

9x?(6n® + 11n% + 6n + 1)(a; — 2b,k)?] 2

4(2112 - 211 + 1)2b1l1 ’




442 Elsayed M. E. Zayed, Mohamed E. M. Alngar, Reham M. A. Shohib, Anjan Biswas, Yakup Yildirim, Hashim M. Alshehiri ...

_ 9x?(6n® + 13n% 4+ 9n + 2)(a; — 2b;x)?

k
! 2(2n% — 2n + 1)2b,

3

or?(6n3+11n2+6n+1)(as;—2b1x)?] 4

x I_ 4(2n2-2n+1)2bq14 ’ (31)
provided b,l; < 0. By using the solutions (24) and (25)
one gets the following cases of solutions for Egs. (1) and

(2): i
Case-1l: If §,=—X@=2010 o jhen
12(2n2-2n+1)b,

substituting (30) along with (24) into Eqg. (29), one gets
the bright soliton solutions as:

1
6n3 + 11n? an

9x? ( I:I-6; . II ) (a, — 2b,K)?
4(2n% — 2n + 1)%b, 1,

Q(X, t) =1~

1
( L, V2 1"
— i R
I 272 I
X I n | 3k(a, — 2bik) }
| X sech |2 [(2n? —2n + 1)b, ||
X ei(—xx+(ut+£0)’ (32)
and
1
9x? (6n3 + 11n2) (a; — 2b1k)? "
r(x,t) = Al- +6n +1

4’(2n2 - 2n + 1)2b111

1
n
( 1,V I
2 2
X n 3k(a; — 2b1k)
| X sech 5 (@n* —2n+ Db, |
\ x (x — vt) + & 1)
X ei(—lcx+wt+60). (33)
Case—2: If — M@z g ghen

2 7 12(2n%2-2n+1)by
substituting (30) along with (25) into Eq. (29), one gets
the periodic solutions as:

1
6n® + 11n2 in
9K? ( I—I—6Z . Il ) (a; — 2byk)?
4(2n? — 2n + 1)2b, 1,

q(x' t) =\

1
( 1,2 1"
I 272 I
X { n | 3x(a, — 2b,k) I
| X csc|2 | (2n? —2n+ 1)by ||
X ei(—lcx+wt+90)’ (34)
and
3 2 i
9K? (6n +11n )(a1 —2b;K)? "
r(xt) = A|—- t6n +1

4(2n? - 2n+ 1)?b 4

3r

)

I
E\/ 3k(a; — 2b1k) I
2

~(2n? —2n+ Db, | |
X (x —vt) + &y, I

X ei(—xx+wt+£0). (35)

The solutions (32)-(35) are satisfied under the constraint
conditions (31).
Family—2: Substituting (29) and (22) into Eq. (20), one
gets algebraic equations. As aresult, ifwesetS, = S; = S; =
2
S, =8,=5,=0 and S5 = 4575 in the obtained algebraic
2

equations and solving it by using the Maple, one gets the
following results:

1
q - 1] 9x2(6n3 + 11n? + 6n + 1)(a, — 2b,x)?*]*
°7 2 (2n? = 2n + 1)2b,1, ’

1
0 - 9x2(6n® + 11n? + 6n + 1)(a; — 2b,k)?*]*
3T (2n2 — 2n + 1)2b,1, ’

_ n’r(ay — 2bk)
27 302n2 -2n+ )b,

__ 2n%k(a1—-2b1k)
3(2n2-2n+1)b,’

Ss (36)

and

9x2(3n? — 8n + 1)(a, — 2b,x)?
__ #8b,(2n* = 2n + 1)*(a;x® — bix* + Axy)
B 8b,(2n2 — 2n + 1)2 ’
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81k*(36n° — 49n* + 14n? — 1)(a; — 2byk)*

ci = ]
! 256(2n2 — 2n + 1)*b21,
dl = 0, el = O'fl = 0, gl = 0, kl = 0,
_ 12nk(n+1)(aq—2b1k) _ 14
hy = (2n2-2n+1) \/ (6n3+11n2+6n+1)b;’ (37)

provided b;l; < 0. By using the solutions (26) and (27)
one gets the following cases of solutions for Egs. (1) and
(2):

Case—1: Substituting (36) along with (26) into Eq.
(29), then one gets the dark soliton solutions as:

1
3 2 in
9xc? (67:-6; _1|_1IL ) (a; — 2b;x)?
2n? —2n+ 1)2b,1;

Q(X, t) =\|—

Sk

x{-tanh (2 [(2n2 — 2n + 1)b,

n\/ 3k(a; — 2b1k)
2
X (.x - Ut) + +€03

X ei(—kx+wt+£0)' (38)

and

1
2 6n3 + 11n? _ 2 4n
9k ( a1 )(a1 2b, k)

) =Al-
@t (2n? — 2n + 1)2b, 1,

1
1 n 3k(a; — 2b1k) "
X Etanh > (2n%z - 2n+ b,
X (x —vt) + +&y3
X ei(—kx+wt+eo)’ (39)

provided (2n? — 2n + 1)(a; — 2b;k)xb; > 0.
Case—2: Substituting (36) along with (27) into Eq.
(29), then one gets the singular soliton solutions as:

1

2 6n3 + 11n? _ 2 an
9k ( ten 41 )(a1 2b, k)

lt =\|—
U (2n% — 2n + Db,
1
n
n | 3x(a; — 2byk)
X Ecoth 2 |(2n?2 —=2n+ 1)b,
X (x - Ut) + +€04
X ei(—Kx+wt+so)’ (40)
and

1
6n3 + 11n? an
9x? ( T-l|-6-r|_1 n f ) (a; — 2b;x)?
(an - 27’1 + 1)2b1l1

r(x,t) =A|-

3|

1 n 3k(a; — 2b1k)
X ECOth 54 @n* —2n+1)b,
X (.x - Ut) + +§04_

X ei(—kx+wt+£0)‘ (41)

provided (2n? — 2n + 1)(a; — 2byk)xb; > 0.
The solutions (38)-(41) are satisfied under the constraint
conditions (37).

3. Multiple—core couplers (Coupling with
nearest neighbors)

The CQ system for multiple—core couplers in optical
metamaterials having the generaized Kudryashov’s law of
arbitrary refractive index with perturbation terms is written
as:

i(q¥), +ias(q®),_ + bs(q®)

xXxXxx

Cs ds €s
+ [lq(s)|4—n |q(s)|3n |q(s)|2n
S ®[" ©[*" ©*"
+|q(s)|n+gs|q | +h5|q | +k5|q |

+1,]q9]"| ¢ = a; (|a®[*q®)

XX

R AQINCIO ISR CIOIRCRN N

+K(qGD = 2¢©@ 4 g+D) 4 [,15 (|q(s)|2q(s))
X

+u5 (Jg® Iz)x 9© +6,q®(¢®),| @2

where 1 < s < M and K is the coupling coefficient. Eq. (42)
represents the general model for optical couplers where
coupling with nearest neighbors is considered. This model is
decomposed by assuming:

q(s)(x’ t) — ¢S(f)ei(_xx+wt+s°), (43)
where &, is the amplitude component of the soliton.
Substituting (43) and (4) into Eq. (42), the real part is
given by:
bsd>§4) + 3k(as; — 2bsx) Py — (Bs + ys + 3ay)

X PP — 6a, D DL — (w + agk® — bk*) D,
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+[K?(Bs + a5 +¥5) + k(A5 + 6)] D3
—K(®g_y — 20; + D) + ¢, DL + d DL
+e, P17 4 fOIT + g DL 4 h PLTIN
+h DI + [ DL = 0, (44)
and the imaginary part is given by:
(a5 — 4bsk)@¢" + [2k(Bs — ¥s + 3as) + (345 + 2ps
+0,)]P2d, — (v + 3ask? — 4bsk3)P, = 0. (45)

Eq. (45) gives the soliton frequency:

as
K = 4'_bs' (46)
the soliton velocity:
v = 4bsk3 — 3agk?, 47

and the constraint condition:
2k(Bs —vs + 3a5)
+(3A + 2us + 6,) = 0. (48)
Using the balancing principle in Eq. (44), one gets:
O, =D, = Dy, (49)
Consequently, Eq. (44) changes:
bsd>§4) + 3k(ag — 2bsk) DS — (Bs + vs + 3a,)
X OZDY — 60, DY + [12(Bs + a5 +¥5)
+r(As + 65)]D3 — (w + agk® — by Dy + c DI
+d;®;73" + e, @I + [, ;T + g DI

+hy @2 4 g I3 4 | DI =0, (50)

1
By using the transformation @, (&) = Z»(§), one has
a new equation:

n3b,Z3Z® — 4n?(n — 1)b,Z%72'Z"" — 3n?
X (n—1)bsZ%2Z"* + 6n(2n — 1)(n — 1)bZZ'?Z"
—-(n—-1)2n-1Gn-1bZ"* + 3n%k
X (ag — 2bsk)[nZ3Z" — (n — 1)Z%Z'?] + n*c
+n*d,Z + n*e,Z? + n*f, 73 — n*(w + a,K3

—bskM)Z* + n*g,Z5 + n*h Z® + ntk Z7 + ntl 28

2+4n
At i (Bs + a5 +¥s) + k(A + 0-)]1Z7 7
2+3n
—n3(Bs +vs +3a,)Z n Z" +n?[(n—1)

2+

2n
n Z2=0. (51

X (Bs +vs) —3(n—3)as]Z
For integrability, one must select
(n—1Bs +vs) —3(n—3)a; =0,
K(Bs +as+v¥s) + A +6;=0,
Bs +vs +3a, =0. (52)

Consequently, Eq. (51) changes to:
n3bZ3ZW — 4n?(n — 1)bZ%Z'Z"" — 3n?

X (n—1)bsZ?Z"? + 6n(2n — 1)(n — )b, 22"%Z"
—(n—-1)2n-1)3Bn - 1)b,Z"* + 3n%k(as — 2bsk)
x [nZ3Z" — (n — 1)Z%Z'%] + n*c, + n*d,Z + n*e,Z?
+nf, 23 — n*(w + asx® — byx*)Z*
+ntg.Z% + n*hZ® + n*k,Z7 + n*l,Z8 = 0. (53)

Now, we will solve Eq. (53) by using the following
method:

3.1. New auxiliary equation approach

According to this method, balancing Z3Z™® and Z® in Eq.
(53) by using (23), one gets N = 3. It follows that Eq. (53)
has the following solution form:

Z() = Qo + U F () + QF? () + Q3 F3(©),  (54)

where Q,, Q,,Q, and Q5 are constants, provided Q5 # 0.
Family-1: Substituting (54) and (22) into Eq. (53), one
gets algebraic equations. As aresult, ifwesetS, = S; = S; =
S, =8¢ =S, =0, in the obtained algebraic equations and
solving it by using the Maple, one gets the following results:

1
1 [ 9k2(6n3 + 11n? + 6n + 1)(a, — 2bsk)?]*

Q== )
072 4(2n2 — 2n + 1)2b,l;

1
3 [ 9k2(6n + 11n? + 6n + 1) (a, — 2bsk)?]*

4(2n? — 2n + 1)?bgl ’

3

_ n’xr(as — 2bgk)
" 12(2n2 —2n+ )by

Sz

n?k(as—2bgk)
6(2n2-2n+1)bg’

Sg = (55)

and
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9k2(37n% — 32n + 9)(as — 2b.k)?
_ +32b,(2n* — 2n + 1)*(ask® — bsk*)
B 32(2n2 — 2n + 1)2b, ’

81k*(36n° — 49n* + 14n? — 1)(a, — 2bsk)*

G = 4096(2n? — 2n + 1)*b21,
_ 9k%(3n® — 7n® + 3n — 2)(a; — 2bsk)?
s 32(2n2 — 2n + 1)2b,
1
9k2(6n3 + 11n? + 6n + 1) (as — 2bgk)?]*
4(2n? — 2n + 1)2b,l ’
_ 27nk?(n® — 4)(a, — 2bsx)?
9s = 4(2n% — 2n + 1)?b,
1
9k2(6n® + 11n? + 6n + 1)(a, — 2bgk)?] 4
4(2n? — 2n + 1)%b,l; ’
_ 9x?(3n® + 19n® + 20n + 4)(ag — 2bgk)?
s 4(2n? — 2n + 1)2b,

1
9k2(6n® + 11n? + 6n + 1) (a, — 2bsk)?] 2
4(2n? — 2n + 1)%b,l; ’

_ 9x?(6n® + 13n? + 9n + 2)(ay — 2bgk)?
s 2(2n2 — 2n + 1)2b

3
9k2(6n + 11n? + 6n + 1) (a, — 2bsk)?] 4
4(2n? — 2n + 1)?bglg ’

ds = 0; €s = 01 (56)

provided bl < 0. By using the solutions (24) and (25)

one gets the following cases of solutions for Eq. (42):
Case—1: |fS = M
=== Y2 T 1p(2n2-2n+1)bg

soliton solutions as:

1
3 11 2 an
9x? (62—6-:1 . Il ) (ag — 2bgk)?
4(2n? — 2n + 1)2b,l;

¥ t) = |-

3~

. \
X ! n | 3x(a; — 2bgk) l

| x sech 2 |(2n? — 2n + )b, i
\ X (x —vt) +$o1 )

_\
N =
S|

X ei(—pcx+wt+so)’ (57)

> 0, then substituting
(55) along with (24) into Eq. (54), one gets the bright

n?k(as—2bsk)
12(2n2-2n+1)bg
(55) along with (25) into Eq. (54), one gets the periodic
solutions as:

Case-2: If §, =

< 0, then substituting

1
6n3 + 11n? an

9xc? ( 16: n Il ) (ag — 2bsk)?
4(2n? — 2n + 1)%b,l;

a9 t) = |-

1
( 1,2 1"
—+—
| 272 |
X { n | 3x(as; — 2bgk) }
| X esc|2 [ (2n? — 2n + 1)bg| |
X ei(—xx+wt+£0)' (58)

The solutions (57) and (58) are satisfied under the
constraint conditions (56).
Family-2: Substituting (54) and (22) into Eq. (53), one
gets algebraic equations. As aresult, ifwesetS, = S; = S; =
2
S, =8,=5,=0 and Sg = 4575 in the obtained algebraic
2

equations and solving it by using the Maple, one gets the
following results:

1
q - 1] 9x?(6n3 + 11n? + 6n + 1)(a, — 2bsk)?]*
072 (2n% — 2n + 1)2bgl, '

1
Q- 9k2(6n3 + 11n? + 6n + 1)(a, — 2bsk)?]*
3T (2n% — 2n + 1)2bglg ’

Ql = QZ = 0,
6 - n2k(a; — 2bsk)
27 3(2n%-2n+1)b,
__ 2n?k(as—2bgk)
5 7 3(2nZ-2n+1)bs’ (59)
and
9x2(3n? — 8n + 1)(as, — 2bk)?
_ _ +8b,(2n® — 2n + 1)*(ask® — bsx*)
a 8b,(2n? — 2n + 1)2 ’
81k*(36n° — 49n* + 14n? — 1)(a, — 2b.k)*
cg = —

256(2n2 — 2n + 1)*b21, ’

de=0,e,=0,f,=0,9,=0,k; =0,

hs __ 12n;c(n+1)(as—2bsrc)\/_ ls (60)

(2n2-2n+1) (6n3+11n2+6n+1)bs’
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provided b,l; < 0. By using the solutions (26) and (27)
one gets the following cases of solutions for Eq. (42):

Case—1: Substituting (59) along with (26) into Eq.
(54), then one gets the dark soliton solutions as:

1

3 2 an
9K2 (6n + 11n )(as _ zbSK)z 4n
q(s)(x t) —|—= +6n+1
’ (2n? — 2n + 1)2bgl
1
n
n | 3x(as — 2bsk)
X Etanh 2.](2n% —2n + 1)b

X (x —vt) + +&o3

i(—rx+wt+
Xel( KX+ 80)’

(61)
provided (2n? — 2n + 1) (a; — 2bsk)Kkbg > 0.

Case—2: Substituting (59) along with (27) into Eq.
(54), then one gets the singular soliton solutions as:

1

3 2 4n
9k 2 (6n +1in ) (as — 2bsk)? "
q(s)(x t) —|— +6n+1
’ (2n? — 2n + 1)%bl;
1
n
n | 3x(as — 2bsk)
X Ecoth 2 |(2n? — 2n + 1)b;

X (x —vt) + +&4

i(—Kkx+wt+
Xel( KX+w 80)’

(62)

provided (2n? — 2n + 1)(as — 2bgk) kb > 0.
The solutions (61) and (62) are satisfied under the
constraint conditions (60).

4. Multiple-core couplers (Coupling with all
neighbors)

The CQ system for all the existing neighbors in
optical metamaterials having the generalized
Kudryashov’s law of arbitrary refractive index with
perturbation terms is written as:

i(q(s))t +ia,(q®)___ +by(q®)

XxXx XXXX

Cs

+ ds
lg®]*n

IRl

€s
|q(s)|2n

LS

o+ 9slaO" + hela®" + kelg @

+1]q®"]q® = a; (|g©[ )

XX

R AQINCI SR COIRCION

M
+ Z xomd™ + 1[4 (l4© q®)

m=1

+u5 (Jg® Iz)x 9© +6,q®"(¢®),|  (©63)

where 1 <s <M, while y,, represents the coupling
coefficient with all neighbors. This model will be solved by
taking the same assumption (43).

Substituting (43) and (4) into Eq. (63), give the same
imaginary part (45), which recovers the same relations (46)-
(48) and the real part as:

bS<D§4) + 3k(ag — 2bsk) DS — (Bs + s + 3ay)
X PZP! — 6a, D DL — (w + agk® — bgr*) D,

- Z Xsm@Pm + [Kz(ﬁs + a5 +vs) + k(As + 65)]

m=1
X D2+ ¢, @ + d DT + e @1 + fdg T
+gs D5 + AT + kDL + [ DI = 0. (64)
Utilization the balancing principle induces the result:
q;m =

.. (65)

Consequently, Eq. (64) becomes:
bsd>§4) + 3k(ag — 2bsk) D — (Bs + s + 3ay)
X PZP! — 6a, D DL — (w + ask® — bgk*

M
£ )+ [P (s + & +15) + 0 + 6)]

m=1
X 2+ ¢ @ + d DT + e 1T + fdg T

+gs P + R @ + ke D + [ DT = 0. (66)

1
Using the transformation @®,(§) = H=(§), gives a new
equation:

nbH3H® — 4n?(n — 1)b,H?H'H'" — 3n*(n — 1)
x b,H?H'"? + 6n(2n — 1)(n — D)bHH?H" — (n — 1)
x (2n —1)(3n — 1)b,H'* + 3n?k(a; — 2bsk)

X [nH3H" — (n — 1)H?H'?] + n*c, + n*d H + n*e H?

M
+ntfH3 — n*(w + ask® — bor* + Z Xsm)H*

m=1
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+ntgH® + n*hH® + n*k H” + n*l H® + n* k2 (B,
+ ag

2+4n
+¥s) + k(s + 6)]H
2+3n

—n3(Bs +ys +3a,)H n H”

+n2[(n— 1)(Bs +¥5) — 3(n — R)ag]H 7 H? =0,

(67)
For integrability, one must select
Bn—=2)(Bs +vs) —9(n —2)a; =0,
KBs+as+¥) + A+ 6, =0,
Bs +vs +3a, =0,
¢=0,d,=0, f,=0, g =0. (68)

Consequently, Eq. (67) changes to:
n3bH3H® — 4n?(n — 1)b,H?H'H""' — 3n?
x (n — 1)bsH*H"? + 6n(2n — 1)(n — 1)b,HH'?
xH" —(n—1)(2n —1)(3n — 1)bH'* + 3n%k
X (ag — 2bgk)[nH3H'" — (n — 1)H?H'?] + n*c,

+n*dH + n*e,H? + n*f,H? — n*(w + agx®

M
—byk* + Z Xsm)H* + n*g H®

m=1
+n*h H® + n*k ,H + n*l H® = 0. (69)

Next, we will solve Eq. (69) by using the following
method:

4.1. New auxiliary equation approach

According to this method, balancing H*H™® and H®
in Eq. (69) by using (23), one gets N = 3. It follows that
Eg. (69) has the following solution form:

H(E) = Qo + Qi F(§) + QF?(§) + Q3 F*(©), (70)

where Q,, Q,, Q, and Q5 are constants, provided Q; # 0.

Family-1: Substituting (70) and (22) into Eq. (69),
one gets algebraic equations. As a result, if we set S, =
S =8;=5,=S,=S5, =0, in the obtained algebraic
equations and solving it by using the Maple, one gets the
following results:

1
1] 9k2?(6n3 + 11n% + 6n + 1)(a, — 2bsx)?]*

Q _—— )
°7 2 4(2n2 — 2n + 1)2h,l;

1
9x2(6n® + 11n? + 6n + 1)(a, — 2b,k)?|*

(1 = ]
3 4(2n% — 2n + 1)2bgl
¢ - n%k(ag — 2bgk)
27 12(2n%2 = 2n + 1)b,’
¢ - n?k(ag — 2bgk)
87 6(2n2-2n+1)b
0 =0,=5=0, (71)
and
9x2(37n% — 32n + 9)(a, — 2bsk)?
3 _ b 4
+32b,(2n% — 2n + 1)? (asKM sk )
w=— +'2Ln:1 Xsm
32(2n% — 2n + 1)2b, ’
_ 81k*(36n° — 49n* + 14n* — 1)(a, — 2bsK)*
€= 4096(2n? — 2n + 1)*h2L, '
_ 9k?(3n® — 7n® + 3n — 2)(a; — 2bsx)*
s 32(2n% — 2n + 1)2b,

1
y 9k2(6n3 + 11n? + 6n + 1)(a, — 2bsk)?]*
4(2n? — 2n + 1)?b,l; ’

27nk?(n? — 4)(ag — 2bgk)?
4(2n? — 2n + 1)%b,

Is =

1
9k2(6n® + 11n? + 6n + 1) (a, — 2bsk)?]| #
4(2n? — 2n+ 1)%bgl ’

_ 9k2(3n® + 19n” + 20n + 4)(a; — 2b,k)?
s 4(2n2 — 2n + 1)2b,

1
9k2(6n3 + 11n? + 6n + 1)(a, — 2bsk)?] 2
4(2n? — 2n+ 1)%bgl ’

_ 9x*(6n® + 13n% + 9n + 2) (a; — 2bgk)?

ks 2(2n2 — 2n + 1)2b,

3
9K2(6n3 + 11n? + 6n + 1)(a, — 2bsk)?]| #
4(2n? — 2n+ 1)%bgl ’

ds = 0; es = 0; (72)

provided bgl; < 0. By using the solutions (24) and (25) one
gets the following cases of solutions for Eq. (63):

2 —_
Case-1: If §, = X@s=2b%) o 1 then substituting
12(2n2-2n+1)bg

(71) along with (24) into Eq. (70), one gets the bright soliton
solutions as:
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1
6n3 + 11n? am
9x? ( 7-1|-6n " ;1 ) (ag — 2bgk)?
4(2n2 — 2n + 1)?bl;

q(s)(x’ t) = |-

3|

1 V2
_i_
272

X n | 3x(as — 2bsk)
xsech|2 [(2n% —2n + 1)b

X (x —vt) + &y,
X ei(—xx+wt+so)’ (73)

2 -
Case 2: If 5, = @259 ) then substituting
12(2n2-2n+1)bg

(71) along with (25) into Eq. (70), one gets the periodic
solutions as:

1
2 6n3 + 11n? _ 2 an
9k ( tent1 )(as 2bgk)

() - | =
770 4(2n? — 2n + 1)2b,1,

3w

*

| ‘|
x{ n\/ 3k(ag — 2bgk) }

N =
~|

LX csc|2 [(2n2 = 2n + Db, J
X (x —vt) + &y,

X ei(—lcx+wt+£0). (74)

The solutions (73) and (74) are satisfied under the
constraint conditions (72).
Family-2: Substituting (70) and (22) into Eq. (69),
one gets algebraic equations. As a result, if we set S, =
2
$1=5,=S,=5=5=0 and S3=-=
2
obtained algebraic equations and solving it by using the
Maple, one gets the following results:

, in the

1
3 2 I
9xc? (6n +11n ) (ag — 2bsk)? *

P +6n +1
072 (2n2 — 2n + 1)2b,l; ’
3 2 l
6n° + 11n 4
9x2 — 2bsk)?
Q, =|- * ( +6n+1 )(as k)

(2n? — 2n + 1)2b,l;

n2x(as — 2bsk)

S, = :
27 3(2n% — 2n + 1)b,

2n%k(as — 2bsk)

Ss = :
> 7 3(2n% — 2n + 1)b

Q,=0Q,=0, (75)
and

9x2(3n? — 8n + 1)(a, — 2bsk)?
asx3 — bSK4)

+8b,(2n? — 2n + 1)? (
s + Xm=1 Xom

w=- 8b,(2n2 — 2n + 1)2 ‘
81k* (36n6 . 49n4) (ag — 2bgk)*
S +14n? — 1
§ 256(2n2 — 2n + 1)*b2l, ’

12nk(n + 1)(ay — 2bsk)
(2n?2-2n+1)

hg =

ls
X J—
\] (6n3 +11n2 + 6n + 1)b,’

d;=0,e,=0,f,=0, g, =0, k,=0, (76)

provided bgl; < 0. By using the solutions (26) and (27) one
gets the following cases of solutions for Eq. (63):

Case—1: Substituting (75) along with (26) into Eq. (70),
then one gets the dark soliton solutions as:

1

2 6n3 + 11n? _ 2 an
9k ( tn 41 )(as 2bsk)

) ) =|-
770 (2n? — 2n + 1)2b 1,

1
n

1 n | 3k(as — 2bsk)

x Etanh 2 |(2n? — 2n + 1)b,
X (x — Ut) + +€03
% ei(—xx+wt+£0)’ (77)

provided (2n? — 2n + 1)(as — 2bsk)Kkbg > 0.
Case—2: Substituting (75) along with (27) into Eq. (70),
then one gets the singular soliton solutions as:

1
2 61’13 + 111’12 _ 2 an
9k ( tn41 )(as 2bgk)

s ==
q(xt) =
(2n? — 2n + 1)2bl;

3~

1 n 3k(as, — 2bgk)
x4zcoth|2 [(2n? —2n + 1)b;

X (x —vt) + +&y,

% ei(—;cx+wt+£0)’ (78)
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provided (2n? — 2n + 1) (a; — 2bgk) kb > 0.
The solutions (77) and (78) stay valid under the
constraint conditions (76).

5. Conclusions

Today’s paper is about the isolation of soliton
solutions to the governing model that is with CQ
dispersive effect coupled with Kudryashov’s generalized
form of SPM. Twin—core couplers along with multiple—
core couplers are studied in this paper. The new auxiliary
equation approach identifies the full spectrum of soliton
solutions that are presented. Thus, a new chapter from
optical couplers have opened up that gave way to a lot of
untraversed open avenues. An immediate thought would
be to identify the conservation laws. Other avenues to
walk through are looking into the recovery of soliton
parameter dynamics by the application of the variational
principle or moment method or even with the application
of collective variables. Next, the quasi-stationarity as well
as quasimonochromaticity effects are also to be touched
base on. These would keep the authors busy !
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